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Abstract--This paper analyzes quasi-steady combustion and evaporation of large and moderate size single 
fuel droplets in a quiescent atmosphere taking into account the kinetic effects, variable thermo-physical 
properties, thermal diffusion and radiation. An analytical solution is obtained for the heat and mass fluxes 
in the neighbourhood of the large burning droplets in the case of high reaction rates. The analytical 
formulae are derived for temperature and concentration distributions and heat and mass fluxes in the 
vicinity of the burning or evaporating droplet. The contribution of the various effects to the heat and mass 
fluxes is ,malyzed. It is shown that the effect of thermal diffusion is essential in the case of evaporation or 
combustion of fuel droplets with internal heat sources (i.e. when temperature at the surface of fuel droplet 
is higher than an ambient temperature) in a binary gas mixture with significant differences in molecular 
weights or diameters. Also it is shown that the effect of radiation is significant in case of evaporation and 
combustion of large droplets. The theoretical results are compared with the available experimental data. 

1. INTRODUCTION 

The theory of evaporation and combustion of fuel 
droplets has been developed intensively during the 
past few decades. Detailed discussion of this subject 
may be found in reviews by Law [1] and Sirignano 
[2]. The classical droplet vaporization and combustion 
model is described in many textbooks on combustion 
(see e.g. Lefebvre [3] and Williams [4]). However, this 
model employs many oversimplified assumptions : 

(1) average va lues of the thermophysical properties ; 
(2) Lewis number  in the gas phase in the neigh- 

bourhood of the droplet is equal to 1 ; 
(3) the effect of  Stefan's flow on heat and mass 

transfer in the neighbourhood of the droplet is 
neglected ; 

(4) the vaporization rate of the droplet in stagnant 
environment  is multiplied by an empirical factor 
0.5Nu0, where NUo is the Nusselt number  for a solid 
sphere ; 

(5) the droplet surface is assumed to be at the nor- 
mal boiling temperature ; 

(6) fuel leaves the surface of the droplet by 
diffusion only (in this case relative concentration in 
the neighbourhoad of the droplet C~ << 1). 

In case of combustion of fuel droplets, high tem- 
perature differences occur in the neighbourhood of 
burning droplets and using the mean coefficients of 
heat and mass transfer causes significant errors. 

In reality, the Lewis number  varies in the range 
from 1 to 4 during the vaporization period [5]. Many 
factors, e.g. the variable thermophysical properties, 

Knudsen layer, evaporation, radiation, affect the 
value of the Nusselt number  [6, 7]. However in spite 
of the fact that the assumptions of the classical model 
are violated in many cases, it is widely used in the 
most advanced computations of evaporation and 
combustion of sprays [8, 9]. Many of the latter 
approaches are based on the assumption that the 
spray evaporation rate is the same as that for an iso- 
lated drop in a stagnant ambient  fuel vapor atmo- 
sphere. 

In case when vapor leaves the surface by diffusion 
only, Saiton and Nagano [10] analyzed large droplet 
evaporation in a hot stagnant gaseous atmosphere 
taking into account variable thermophysical proper- 
ties. Significant discrepancies between constant  and 
variable thermophysical properties solutions were 
obtained. 

In the case of combustion of fuels with high flame 
front temperature (i.e. Tr is in range 1800-2500 K), 
the fuel leaves the surface of the droplet mostly by 
convection. In this case the assumption that fuel leaves 
the surface by diffusion only (i.e. C~ << 1), adopted in 
the previous studies, is not  valid. 

In numerical investigations of vaporization and 
combustion of fuel droplets and their applications 
to the modeling of spray-fueled combustors, droplet 
evaporation rate calculations are based on the d 2 law : 

d(d 2) 
- K = const. (1) 

dt 

In the case of evaporation or combustion of mod- 
erate size droplets, 0.01 ~< Kn <~ 0.3 (Kn is a Knudsen 
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A molecules of gas components 
C, = n/Y,~n~ dimensionless concentration 
d droplet diameter 
Dj.~ binary diffusion coefficient 
j flux density 
j flux density in radial direction 
h specific enthalpy 
k coefficient of thermal conductivity 
K(r r), K(. n) temperature and concentration 

jumps 
K(n) ~(T)  r ,  "~n cross coefficients 
Kr thermodiffusion ratio 
L latent heat of evaporation 
rn mass of a molecule 

evaporation rate 
n concentration 
q heat of combustion 
Qr heat flux 
Q~, Q2 mass flux 
r radial coordinate 
R radius of droplet 
R* universal gas constant 
T temperature 

NOMENCLATURE 

t 

Y 

Xf 

time 
mass velocity of the gas 
distance between droplet surface and 
flame front. 

Greek symbols 
v, e stoichiometric coefficients 
p gas density 
zs = T(S>/Tr 
rf = Tf/T~. 

Subscripts 
e external value 
f value at the flame front 
i, j species i o r j  
1,2 . . . . .  N number of species 
s value at the droplet surface 
oo value at infinity. 

Superscripts 
(1),(2) number of zone 
(s) value at the droplet surface. 

number), the d 2 law is not valid since K in expression 
(1) is not constant because it includes kinetic cor- 
rections depending upon the Knudsen number [11]. 

In order to abandon some approximations of the 
classical droplet evaporation and combustion model, 
it is necessary to undertake thorough investigation of 
droplet evaporation kinetics. 

The present investigation attempts to develop the 
gaseous phase quasi-steady model of evaporation and 
combustion of  large size and moderate size fuel drop- 
lets in a more general case, when relative differences 
of concentration in the neighborhood of  a droplet are 
small, i.e. 

ICl -  C1,,I 
<< i (2) 

C2oo 

taking into account the influence of variable ther- 
mophysical properties and internal heat sources and 
thermal diffusion. The developed model does not 
employ the assumption about small temperature 
differences in the neighborhood of the burning drop- 
let. 

In the next section the important evaporation 
characteristics of fuel droplets with internal heat 
sources are discussed. The quasi-steady model of com- 
bustion in the case when fuel leaves the surface by 
diffusion and relative differences of concentration in 
the neighborhood of a droplet are small is presented 
in the second section. 

2. VAPORIZATION OF LARGE SIZE AND 
MODERATE SIZE FUEL DROPLETS IN A 

STAGNANT AMBIENT ATMOSPHERE 

Consider a spherical droplet of pure fuel immersed 
into a stagnant binary gas mixture at high temperature 
Too, with the concentration of volatile species Cloo. It 
is assumed also that the internal sources within the 
droplet heat the droplet 's surface uniformly. The 
influence of gravitational convection on the process 
of evaporation is neglected. Since the characteristic 
times of heat and diffusive relaxation are small we can 
consider steady-state evaporation. 

Under the above assumptions the system of mass 
and energy conservation equations is [12] 

divji = 0 (3) 

d iv j r  = 0 (4) 

where mass and thermal energy fluxes are determined 
taking into account the Stefan's flow : 

j~=niv-m;2D(VC~+(--1)~+' ~ V T ~ )  (5) 

Jr = ~ h,mj,- keVTe (6) 
i 

( i , j=  1,2,i #j) .  

Note that in a binary gas mixture the thermodiffusion 
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ratio (the ratio of thermal diffusion coefficient to 
diffusion coefficient) Kr> 0 when m~ > m2, and 
Kr < 0 when m~ < m2. 

The boundary conditions for equations (5)-(6) 
allow the existence of temperature and concentration 
jumps at the surface of a droplet [11] : 

(T~-  T,)Ir=R = K(f , c~T~ 
~ r  r = R + K~)T® r = R  (7) 

(C 1 - C~)(T3)I~= R = K¢.) Oc' 
K~ r) OTo 

Or ,=R+ 1 ' ~  Or ,=R 

(8) 

These boundary conditions must be supplemented 
with the condition of continuity of energy flux at the 
droplet surface : 

w~ 
=: ((L, - -h , )ml j ,  + j r+ jS ) l r  = R. (9) 

4nR 2 

Conditions at infinity are 

T . I , . .  = T .  C,l~.oo = C,o~ (10) 

where C~ =n,/~,~n~ is a relative concentration, 
K(f ), K(~ ") are coefficients of temperature and con- 
centration jumps [11, 16], ~ ' ( ' )~ ' (~  • xr , ,x, are cross 
coefficients [11 ], j~ is density of a mass flux, j r  is density 
of a heat flux, jR is density of a radiative flux, m~is mass 
of the molecule species i, D is diffusion coefficient, Wr 
is total power density of internal heat sources, L is 
latent heat of evaporation, h~ is enthalpy. Since the 
molecules of species 2 are not absorbed at the droplet 
surface the integral flux Q2 = 4nr2j2 = 0 (i.e. j2 = 0). 
Taking into account that C2 = 1 - C~ we arrive at the 
following expression for mass velocity of the gas : 

mln (dCi + Kr dTo'~ 
v, Y  pD(--a7 Z T r  J" (11) 

Substituting equation (1 l) into the expression (7) for 
j~ yields 

Dn {dC, + K~ dTo~ 
J'  = -C-~2  ~,-'~-r ~~ dr]"  (12) 

Using equations (11), (12) the conservation equations 
(3)-(6) can be r,:presented as follows : 

d [ 2  {nn (dC~ Kr dTo~\-] 
TrrL r dr + ~ ~  - -~r) )J  = 0  (13) 

In the general case the coefficients of heat conductivity 
and diffusion depend upon the temperature and con- 
centration. However, in case when a condition (2) 
is satisfied, the dependence of thermal conductivity 
coefficient on relative concentration C~ can be 

neglected. Thus we can consider k~ as a function of T~ 
only : 

k¢ = k~(Te, C~) .  (15) 

Expanding the thermodiffusion ratio into the Taylor's 
series and neglecting higher order terms we obtain 

Kr = K~) + K~)(C, - C , ~ )  (16) 

where 

K~ ) = Kr(To, C,~), K~ ) - ~3Kr(To, C,•) c, 
OCl = c,~ 

If  condition (2) is satisfied, we can assume that 
C2 = C2~. Then equation (14) can be easily integrated 
to yield 

h m  k dT, A 
, d ~ -  °~ -r  = 7 (17) 

where A = Qr/4n and QT is a constant integral heat 
flux. 

After integrating equations (17) and (l 3) we obtain 

f T r* d T~ - 
k~ 1 

®(Qr-h lmtQ, )  -- ~nr (18) 

Dn [ ldro  = a 
_dC, +(K~) + K ~ ) ( C , - C , o ~ ) ) ~  dr ] 

C2~ \ dr 

(19) 

where G = Qd4zr and Q~ is a constant integral mass 
flux. 

Since temperature T¢ depends on coordinate r only, 
we can choose T~ as an independent variable in equa- 
tion 09): 

( [ d C ,  1 qdT¢\  Q, 
+ (K~)+ K~) (C , -C ,~ ) ) -~J -~ - r )  = k 4nr 2' 

(20) 

Substitution of  equation (17) into equation (20) yields 

dC~ 
+ (K(~) +/'6TO (C, - C , . ) )  

C2~Q1 ko 
- ( Q r - h l m , Q , )  Dn" (21) 

Denoting • = C~-  C ~ ,  equation (21) can be rewrit- 
ten as 

d~  
- -  = --rh(Te)~+th(Te)+n3(T~) (22) 
dTo 

where 

K~. ) K<r °) 
n,(To)- To' n2(ro)=--~-, 

C2~Qj ko 
rl3(Te) = ( Q r - h , m l Q l )  Dn" 
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Solution of this equation yields the explicit expression 
for concentration distribution C~ : 

( f : )  C 1 - C l ~ + e x p  - r h ( T ) d T  

(i/ ) x n~(T) exp n,(Qd~ dT 

o3(T)exp n,(¢)d¢ d r .  (23) 
\ d T~ 

Substituting Ct and T= in the boundary  conditions (7), 
(8) we obtain the system of  algebraic equations to 
determine T~ ~), T} s), Qr  and Qr : 

T~) _ T~) _ 1 ( 4~zR2k ~ (Or-him,Q,) 

x /tr.'(o) ± g (1 )  t r'(~) T~o i.'(,,) _ T.-(r) 
k [ I ' T~  " I ' T  s ' ~  - - C ] ~ ) I  T~S)I'T " l  T ] 

k~ K~)~ (24) +Q'C2~T~n~ / 

C~)_C (T}~)) _ 1 ((Qr-h~m,Q,) 
' 4~R2k~ ~ 

x K (°) (1) (~) ,~ , jT~)  r r j [ r, + K r . ( C ,  --C ~IT~K(")-K(T)~ 

+Q,C2~on@K~) ) (25) 

Wr = Qr+(L-h,)mlQ, +47~R2jR (26) 

f r1"' k~ 1 . (Or_~-m,Q,sdr~ = ~  (27) 

where 

T} s) = T,I.=R, T~ ~) = T~[r=R, C~ ~) = C,I ,~R. 

In cases when effects of temperature and con- 
centration jumps on the process of evaporation can 
be neglected equations (24)-(25) reduce to 

T0[~_e = T~b= ~ = T~; C , L _ e  = C]~)(T,-). 

(28) 

From the system of equations (24)-(27) it is seen that, 
in the case when effects of temperature and con- 
centration jumps and radiation are negligible, the tem- 
perature at the droplet surface does not  depend upon 
r. If  effects of  the Stefan's flow and radiation on the 
process of heat and mass transfer are negligible, the 
expressions for the temperature and concentration 
distributions may be simplified. In this case we can 
obtain the concentration and temperature dis- 
tributions C~, T~ and thermal and mass fluxes Qr and 
Q~ from the expressions 

) Ct = Cio~+exp -- - - ~ - d T  

x , ~ - e x p  -- ~ - d ~  dT  

c>,~O, 1 "~ ke / 7 Kg) \dr  1 

k e d T  = k~ d T  

where 

(29) 

(30) 

R2 dR ml 
d-t- = -- 4np--~ Q'  (36) 

where Pd is droplet density, t is time, R is radius of 
the droplet. Since generally Q~ (in case of nonzero 

" T~ s) 

Qr = 4nR ke dT (31) 
, J T  

C~ s) -- C1 ~ + exp \ -  Jr~. T - J  

x ~ - e x p  -- ~ - d ~  d r  

Q~ = Qr (32) 
C2 ('L k~exp | ~ r K ~ ) .  ,~ jr~ - -  d¢ 

In the above expression the temperature at the droplet 
surface T~ s) can be obtained from the expressions (24) -  
(25) neglecting the convective terms : 

T(~)_ T}~) _ 1 /[reo) ± red),c.(~) 

T~ k~ K~)~ -C~)]~K'~)-K(rn)  Qr+Q'Ce~T~ n ~  / 

(33) 

1 ( f f T ~ ( O )  ± ][z(1) 
Ci ~)-C, (T} s)) = 4rtR2k ~ \ \ t * - r ,  - , - r 0  (C~ ~, 

,,~T~ K(.) K / 7 + ( 2 ,  C2~ - ( r ) \ Q r  _ _ k~ K g ) ~ .  Ci T~ ) 7~ n~D~ )" 

(34) 

It is easy to show that in case when K ( f ) =  K~ ') 
= K~ ) = K(. ~ = 0 (when droplets are large) the equa- 
tions (33), (34) can be rewritten as 

T~ ~) = r?) c i  s) = c ,  (r!s)). (35) 

Using the above results allows one to estimate tem- 
perature and concentration distributions in the neigh- 
borhood of a droplet and heat and mass fluxes, taking 
into account thermal diffusion and variable ther- 
mophysical properties. 

Finally, the radius of evaporating droplet can be 
found from the equation 
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temperature and concentration jumps) depends upon 
the radius R, the equation (38) can be only integrated 
numerically. However for large size droplets (when 
K(f ) = K,  (") = K~ ) = K(f ) = 0) and when effects of 
radiation are neglected, temperature T~ ~) = T~ ~), and 
mass flux Q~ do not depend upon radius. If Cl~ = 0 
(in this case K~ ') = 0, K~ ) = const.) and effect of  the 
temperature and concentration jumps on the process 
of heat and mass transfer of the droplet is neglected, 
the expression fl)r the mass flux from the droplet reads 

Q~ 4 7 t R ~  C,~z~7' ff = k~dr  (37) 

n ~ ( l + K ~ ) )  d T  ~ 
,) T~ 

where 

T s - -  T ~  " 

Given the power dependence of coefficients k~ and D 
on temperature, 

k ~ = k : ~ { T ° )  ~ D = D ~ ( T ° )  '+~ (38) 

the expression fi)r the mass flux Q~ reads 

Q, =4rtRno~D ( l+K~)+~- f l ) ( r~+l- -1)  Km Cls~ s r .  
(~+ 1)(~2 +K~ . . . .  ~ -  1) 

(39) 

The ratio of the values of mass flux determined, 
neglecting the effect of thermal diffusion Q*, to that 
when thermal diffusion is accounted for is 

Q* (1 + a - f l ) ( r~  + ~ T + , - ~ _  1) -K," 
(1+K~+c~_/~) (¢~+ ,_~_1)¢~  ~ (40) O~-= 

where 

Q* = Q, IK~= o. 

3. COMBUSTION OF LARGE SIZE AND 
MODERATE SIZE FUEL DROPLET IN A 
STAGNANT AMBIENT ATMOSPHERE 

In the combustion of large and moderate size fuel 
droplets two regions with large temperature differ- 
ences in the neighborhood of a burning droplet are 
formed. The heat and mass transfer between a fuel 
vapor and combustion products that are formed in the 
vicinity of a flame front occurs in the region between a 
droplet surface and a flame front. In the external 
region the oxidizer flows to the flame front and heat 
flux and combustion products flow into a stagnant 
gaseous atmosphere. Assume that the combustion 
products do not  affect the process of combustion and 
that the rate of mixing is high and the relative con- 
centration differences of oxidizer in the neighborhood 
of a droplet are small. In this case the influence of the 
Stefan's flow on heat and mass transfer is negligible. 

The equation of chemical reaction will be assumed 
as follows : 

N--I  

v}k)Aj+v}~)~Ai = ~. e}k)A, (41) 

where Aj, &, At denote molecules of gas component,  
droplet substance and combustion products, corre- 
spondingly, v} k), r}k, ), ~}*~) are stoichiometric coefficients 
and index j = 1,2 denotes gas component  or droplet 
substance (first or second species, correspondingly). 

Thus a gas mixture in the neighborhood of a burn- 
ing droplet is composed of the molecules of gas of 
surrounding media. The external zone consists of a 
mixture of oxidizer, products of reaction and the gases 
of surrounding media. 

Under  the above assumptions the problem of 
gaseous phase quasi-steady combust ion must  be 
formulated in two domains. The first region is 
R ~< r ~< R + xf, where R = radius of a droplet, and xf 
is distance between a droplet surface and a flame front. 
The corresponding system of conservation equations 
similar to equations (3)-(6) for R <~ r G R + xf reads 
[121 

div Jl = 0 

divj~ ) = 0 (42) 

mfl2 ( ( -  1) I+1 g r V T O , ~  Ji = ni¥-- D~) ) VCi+ 

j~) = ~h,mj,--k~')VT~ ') (i , j  = 1,3, i # j )  (43) 
i 

where superscript 1 denotes the values in the first zone. 
The boundary conditions for equations (42)-(43) 

are 

OG I 
(T~ ' ) -Ti) [ ,=R = K~" ,=R +K~)  gf-~-r  r--R 

(44) 

(C , -C~) (T , ) ) I ,=  = K~ "~ 3C' K~n dT~') , 
R ~-F r=R -~ ~ f  ~F =R 

(45) 

hlmd~l,= R = (Ltmtj~ + j~ )+ j~ ) ) l ,=  R. (46) 

Assume that the chemical reaction rate is large and 
that all molecules of the fuel react with oxidizer. Then 
energy and mass conservation equations in the 
domain R+x f  ~< r < co can be represented as follows : 

div (k~2)VTe (z)) = 0 

div (nD}z)NVC2) = 0 (47) 

with the regular boundary  conditions of temperature 
and energy flux continuity at the flame front : 

T~l)[,=R+xr = T~2~Ir=R+~ f = Tf (48) 
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k(2) ~ - e qm2Q2 0T(2)\ 

= V r " \ ° , = R + ~ ( ( 4 9 )  

The flux of oxidizer at the flame front Q 2  iN determined 
by a stoicbiometric relation [17], 

v~Q2 = v2Q,. (50) 

The flame thickness is assumed to be infinitely small, 
i.e. 

C?)l~ = n+.,, = 0 (51) 

where Q2 is an oxidizer flux to the flame front. 
Conditions at infinity are 

T~2) lr~ ~ = T~ C l l r ~  = C,,~. (52) 

Since there are no restrictions on the temperature 
differences in the neighborhood of a droplet, the 
diffusion coefficient and heat conductivity are con- 
sidered to be functions of temperature and pressure, 

Dj.N = Dj, N(T,p). 

Therefore the solution of the problem of com- 
bustion reduces to solving the above conservation 
equations in the domain R ~< r ~< R + xf (it was done 
in the previous section) and solving the conservation 
equations in the domain R + xt ~< r < ~ .  Thus the 
values T~ ~), *~'(~),~Y~q(1), Q1 can be found from a system 
of  equations similar to (24)-(27) : 

T~)-  T'~) = 4nRl2k~ ( (Qr-h ,rn ,  Q,) ([K~ ' 

_}_ Yd'(1)//~(s) __ Tf K(,,)- K(n'~ 
• ~r, , '~, C , . ) ]  T~) r r ] 

k <~) \ 
+ Q , C : ~ r ~ K ~  ~) (53) 

n s / d s  / 

1 ( (Qr -h lm lQt )  ( 
C~ ° --C,  (T~ ~)) - 4nR2k~,)\- ~-f [K~ ) 

+ Q , C : ~ K ~ . ) I  (54) 
nsDs ] 

Wr = Q~) + ( L - h t )  m~ Qt +4nR2~ a (T(S - T~) 

(55) 

rI2 f k~ l) 1 
(Q~) - h ,  rn, Q,) dT. - 4nR" (56) 

Equations (53)-(56) include the unknown values of 

temperature and location of flame front Tf, xf, which 
can be found by combining the analytical solutions of 
conservation equations (47) and stoichiometric 
relation (50) : 

I)2 Q~ = Q ~ ) - 4 n  (R-l-xf) i '  k~ 2) dT~ (57) qrn2 
V1 J T  

fr~ k~ 2) dT~ 
V I dT~ 

qm2Q 1 = -4n(e+xf)~C2~.2 ('r, k(2) 

Jr  nD(a~ dT~ 

(58) 

Assuming power law dependence of the thermal con- 
ductivity and diffusivity on temperature, 

k~") (r~"o) = k(o") (T~>y (To/ 

V (m) (T~")) = D~0 m) {T~'~'~ ' +a (59) 
k r 0 /  ' 

the expression of the mass flux from the fuel droplet 
reads 

Q i = 4nRnrDf (R + xr) 
Xf  

( l+a , - - f l , ) (O2+~, - -1 )  (Cls_Clf) (60) 
X (1 " ' a ~ t + " - # ' - - l )  

"~- ~1 / k V S  

where O~ = T~°/Tr and m = 1, 2 is a zone number. 
The expression (60) can be obtained similarly to the 

expression (39). The evolution of the radius R of the 
burning droplet can be found from equation (36). 

4. RESULTS AND CONCLUSIONS 

The above model of vaporization of droplets in a 
hot and radiant environment was applied to study 
the process of evaporation and combustion of fuel 
droplets in a binary gas mixture. Analysis of ex- 
pressions for the mass fluxes of evaporating or burning 
droplets [equations (32), (60)] shows that the effect 
of thermal diffusion is essential in cases of evaporation 
or combustion of fuel droplets in a binary gas mixture 
with thermal diffusion ratio of the order of 0.1q).5 or 
higher. It is known that the coefficients of thermal 
diffusion are large for gas mixtures with significant 
differences in molecular weights or diameters. The 
results of numerical calculations of dependence of 
Q~/Q* vs z~ in the case of a droplet with internal heat 
sources (i.e. Zs > 1, where zs = Ts/T~), which are per- 
formed according to expression (40), are presented in 
Fig. 1. Note that the existence of internal heat sources 
can be taken into account by setting the ratio z~ > 1. 
The results presented in this figure show that the 
difference between the fluxes of volatile component 
calculated, taking into account the thermal diffusion 
Q~ and neglecting the effects of thermal diffusion Q*, 
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Q I / Q I  

1 . 2  .......... i . . . . . . . . .  : . .  - i -  -t - - - . . . . . -  i - . . . . . . . ~ - - . . i . . - - . !  ............ 

1.1 ~ 

1 ....................................... 
3 

0.9 ~ 

4 
0.7 = ...-.-,-- --~..--~-:---.----, 

0.6 - -  
;! 3 4 5 6 7 8 9 1 0  • 

Fig. 1. Effect of thermal diffusion on droplet evaporation 
(combustion) with internal heat sources. (1) ~t = fl, Kr = 0.2. 
(2) ct=fl, Kr=0.4.  (3) ~=f l ,  K r = - - 0 . 2 .  (4) ct=fl, 

KT = --0.4. 

can be of the c,rder of 20% when the relative tem- 
perature difference is high. 

The analysis of the expression for the mass flux of 
combusting droplets [equation (60)] shows that the 
ratio of the mass fluxes calculated with and without 
thermal diffusion for the combusting droplets is ident- 
ical to expression (40). The results of  numerical cal- 
culation in the case of combusting droplets (i.e. with- 
out internal heal: sources r~ = Tr/Ts < l) are presented 
in Fig. 2. 

It can be seen from this plot that effects of thermal 
diffusion on the process of combustion are significant 
in cases when temperature differences in the neigh- 
borhood of the droplets are large. In reality, the tem- 
perature differerLces in the neighborhood of the corn- 
busting fuel droplets when the fuel leaves the surface 
by diffusion vary in the range z~ from 0.1 to 0.7. 
However, even :in these cases, the effect of  thermal 
diffusion on the process of combustion is significant. 

The d2-t diagram for n-heptane droplet evaporating 
in nitrogen, obtained from the present model, is shown 
in Fig. 3. Line 1 is plotted for an ambient temperature 
T~ = 100°C and line 2 for an ambient temperature 
To~ = 300°C. As seen from these plots, the theoretical 
results are in fairly good agreement with experimental 
data [18]. 

Constant  of evaporation K determined by 
expression (1) is an important  characteristic of the 

o/Q; 
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(A) Experimental data [181 for T~ = 300°C. 

process of evaporation. In the case when the burning 
rate is limited by the rate of evaporation, K is equal to 
the constant  of combustion. The classical evaporation 
model yields the following expression for the evap- 
oration constant  : 

8ke In (1 + B) 
K (61) 

PlCp 

where B is the transfer number  for steady-state evap- 
oration, Pt is density of liquid and % is specific heat. 
The transfer number  B is determined at the steady- 
state condition B = Br  = BM (where 

( r ~  - T s )  1"~, 
Br = cp L BM = 1 - ~  

and Ts = steady-state value of  surface temperature). 
The various modifications and refinements of the 
above expression (61) are employed in many inves- 
tigations dealing with evaporation and combustion of 
single droplets and sprays (see e.g. refs. [1, 5, 9]). 
Comparison of values of  the evaporation constant  
and the droplet temperature obtained with the present 
model and from formula (61) for an alcohol droplet 
with the radius 0.15 mm, evaporating in air in the 
range of ambient temperature 100-350°C, is shown in 
Fig. 4. The estimations of the value of radiation flux 
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Fig. 5. Variation of the mass flux vs radius for the alcohol 
droplets. 

show that, in this case, the contribution of  radiation 
flux to the mass flux is less than 5% and the d 2 law is 
valid. The results presented in Fig. 4 demonstrate the 
significant discrepancy between the results obtained 
with the classical model and our model. For  ambient 
temperature 350°C, the classical model under- 
estimates the evaporation constant K by 25%, As seen 
from Fig. 4, the discrepancy between the temperature 
at the droplet surface obtained by the present method 
and steady-state droplet temperature used for cal- 
culation of  evaporation constant according to the 
classical model is more significant. The latter is one of  
the main reasons for underestimation of  evaporat ion 
constant in the classical model. 

In case when the temperature differences in the 
neighborhood of  the droplet are large, the effect of  
radiation must be taken into account. Results of  
numerical calculation of  the dependence of  mass flux 
q (q = rn~Q~) on the radius for the evaporating alcohol 
droplets are presented in the Fig. 5. These results were 
obtained taking into account the effects of  radiation. 
It is seen from these plots that the dependence of  mass 
flux on radius for the evaporating droplet is nonlinear 
in a case when radiation is taken into account. In the 
opposite case (i.e. when radiation effects are 
neglected), as shown in Fig. 6 (curves 2 and 4), the 
dependence is linear. It is readily seen from these plots 
that, in the case when droplets are large, the effect of  
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(2) T~ = 700°C, radiation is not taken into account. (3) 
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Fig. 7. Effect of the distance from a droplet surface to a flame 
front upon the ratio of a mass flux from a burning droplet 
to a mass flux of evaporating droplet, with the temperature 

at infinity equal to a flame front temperature. 

radiation is significant. The difference between the 
results obtained when radiation is taken into account 
(curves 1 and 3) and those neglecting radiation effects 
(curves 2 and 4), is of  order 100% for the large drop- 
lets. 

When mixing and chemical reaction rates are large, 
the combustion is limited by evaporat ion rate. This 
allows consideration of  the combustion process as 
evaporat ion at adiabatic flame front temperature [19, 
20]. In this case expression of fuel mass flux can be 
obtained from expression (41), setting K~ ) = 0 : 

Q~OV) = 4 ~ z R n r D f ( ~ l l _ )  ( C , s -  Clr). 
( l + ~ , ) ( o ~  - - 1 )  

(62) 

The dependence of  Q,/Q ]cv), on R/xf [where Q1 is mass 
flux calculated from equation (60) and Q]OV) is mass 
flux calculated from equation (62)] is shown in Fig. 7. 
The comparison between the exact results obtained 
from expression (60) with the approximate formula 
(62) shows that the adiabatic flame temperature 
approximation underestimates the mass flux. In a 
typical case of  combustion of  fuel droplets with 
R/xr ~ 0.3, the effect of  this underestimation amounts 
to 30%. As can be seen from Fig. 7, expression (62) 
can be used only when R/xf << 1. In the opposite case 
when R/xf ~- 1 one must use the exact relation (60). 

The effects of  the kinetic jumps on evaporat ion rate 
is shown in Fig. 8 for alcohol droplets of  two sizes. 
The values of  coefficients of  temperature and con- 
centration jumps were adopted from ref. [16]. As can 
be seen from these plots, the kinetic effects are sig- 
nificant ( -  12%) at the final stages of  droplet com- 
bustion. Note  that the kinetic effects slow down the 
combustion process. 

The effect of  kinetic jumps on integral mass flow is 
shown in Fig. 9. The results presented in this figure 
demonstrate that the integral mass flow is less when 
kinetic effects are taken into account. The difference 
between the integral mass fluxes calculated with and 
without kinetic jumps can be of  order ~ 12% for 5 # 
droplets. 

In the case of  combustion of  hydrocarbon fuels, the 
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diffusion model,  which neglects the dependence of  the 
transport coefficients (i.e. diffusivity and heat con- 
ductivity) upon concentration is not valid. The reason 
is that, in the latter case, the concentration differences 
in the vicinity of  the droplet surface are quite sig- 
nificant and condit ion (2) is violated. Therefore, the 
consistent solution of  the problem must take into 
account that heat conductivity and diffusion 
coefficients are J~unetions of  temperature and con- 
centration of  gaseous mixture components,  i.e. 
k = k ( T ,  C~), D == D ( T ,  C~). 
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Fig. 10. Variation of radius of burning droplet vs time. (1) 
O2/N2: 21/79; 0.15 arm environment, R0=0.51 ram. (2) 
O2/N2: 75/25; 0.1 atm environment, R0 = 0.57 mm. ( ) 

Theory. (Q) Experimental data [21]. 

Such an approach was employed in calculations of  
combustion of  n-octane droplets. The comparison of  
the prediction of  the theoretical model  with exper- 
imental results [21] is presented in Figs. 10 and 11. 

In these calculations the convective terms in equa- 
tions (5)-(6) were preserved. The agreement of  theor- 
etical and experimental results is fairly good. In the 
calculations we adopted the lumped values of  the 
coefficients of  diffusivity and heat conductivity from 
ref. [19]. The dependence of  these coefficients upon 
temperature and concentration was accounted for 
when solving the system of nonlinear algebraic equa- 
tions (53)-(56). In the solution we adopted the con- 
centration dependence of  k0 in expression (59), as 
recommended in ref. [19], and the dependence of  
diffusion coefficient upon concentration was 
neglected. 

5. S U M M A R Y  

The quasi-steady model of  combustion and evap- 
oration of  large and moderate size single fuel droplets 
in a quiescent atmosphere, taking into account the 
kinetic effects, variable thermophysical properties, 
thermal diffusion and radiation, was developed. The 
comparison of  the theoretical results, obtained with 
the aid of  this model, with experimental data dem- 
onstrated the validity of the developed model. 

An analytical solution is obtained for heat and mass 
fluxes in the neighborhood of  the large burning drop- 
lets in the case of  high reaction rates. The analytical 
formulae are derived for temperature and con- 
centration distributions and heat and mass fluxes in 
the vicinity of  the burning (evaporating) droplet. 

The analysis of  the contribution of  the radiation, 
thermal diffusion and kinetic jump effects on the heat 
and mass fluxes showed that the relative contribution 
of  these effects is quite significant in the range of  
parameters encountered in many combustion systems. 
It is shown that the effect of  thermal diffusion is essen- 
tial in the case of  evaporat ion or combustion of  fuel 
droplets with internal heat sources (i.e. when tem- 
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perature at the surface of  fuel droplet is higher than 
an ambient temperature) in a binary gas mixture with 
significant differences in molecular weights or diam- 

eters. 
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